Notch activation enhances mesenchymal stem cell sheet osteogenic potential by inhibition of cellular senescence

نویسندگان

  • Ye Tian
  • Ying Xu
  • Taiyang Xue
  • Longgang Chen
  • Bin Shi
  • Bing Shu
  • Chao Xie
  • Massimo Max Morandi
  • Todd Jaeblon
  • John V Marymont
  • Yufeng Dong
چکیده

Our previous studies have confirmed the therapeutic effects of mesenchymal stem cell (MSC) monolayer sheet transplantation on allograft repair. A limiting factor in their application is the loss of MSC multi-potency as a result of high density sheet culture-induced senescence. In the study reported in this article, we tested whether Notch activation could be used to prevent or delay sheet culture-induced cell aging. Our results showed that, during in vitro long-term (5-day) cell sheet culture, MSCs progressively lose their progenitor characteristics. In contrast, Notch activation by Jagged1 in MSC sheet culture showed reduced cellular senescence and cell cycle arrest compared with control MSCs without Notch activation. Importantly, knockdown of Notch target gene Hes1 totally blocked the inhibition effect of Jagged1 on cellular senescence. Finally, the in vivo allograft transplantation data showed a significant enhanced callus formation and biomechanical properties in Notch activation cultured long-term sheet groups when compared with long-term cultured sheet without Notch activation. Our results suggest that Notch activation by Jagged1 could be used to overcome the stem cell aging caused by high density sheet culture, thereby increasing the therapeutic potential of MSC sheets for tissue regeneration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Naringin enhances osteogenic differentiation through the activation of ERK signaling in human bone marrow mesenchymal stem cells

Objective(s): Naringin has been reported to regulate bone metabolism. However, its effect on osteogenesis remains unclear. The aim was to investigate the effect of naringin on osteogenic differentiation of human bone marrow mesenchymal stem cells (hBMSCs) through the activation of the ERK signaling pathway in osteogenic differentiation. Materials and Methods: Annexin V-FITC assay and MTT assay ...

متن کامل

Matrigel Enhances in vitro Bone Differentiation of Human Marrow-derived Mesenchymal Stem Cells

Objective(s) The use of co-culture cells as well as extra cellular matrix are among those strategies that have been employed to direct mesenchymal stem cell (MSC) bone differentiation in culture. In this regard, there is no study considering the effects of Matrigel on mesenchymal stem cell (MSC) in vitro bone differentiation. This was the subject of the present study. Materials and Methods ...

متن کامل

Notch signaling negatively regulates BMP9-induced osteogenic differentiation of mesenchymal progenitor cells by inhibiting JunB expression

Although interaction between BMP and Notch signaling has been demonstrated to be crucial for osteogenic differentiation of mesenchymal stem cells (MSCs), the precise molecular mechanism remains unknown. Here, we show that Notch intracellular domain (NICD) overexpression inhibits BMP9-induced C3H10T1/2 cell osteogenesis in vivo and in vitro. Our results show that activated Notch signaling result...

متن کامل

Deletion of RBPJK in Mesenchymal Stem Cells Enhances Osteogenic Activity by Up-Regulation of BMP Signaling

Recently we have demonstrated the importance of RBPjk-dependent Notch signaling in the regulation of mesenchymal stem cell (MSC) differentiation during skeletogenesis both in vivo and in vitro. Here we further performed RBPJK loss-of-function experiments to demonstrate for the first time that RBPJK deficient MSC shows enhanced differentiation and osteogenesis acts via up-regulation of the BMP s...

متن کامل

Osteogenic Differentiation of Rat Mesenchymal Stem Cells from Adipose Tissue in Comparison with Bone Marrow Mesenchymal Stem Cells: Melatonin As a Differentiation Factor

Background: Adipose-derived stem cells (ADSC) could be an appealing alternative to bone marrow stem cells (BMSC) for engineering cell-based osteoinductive grafts. Meanwhile, prior studies have demonstrated that melatonin can stimulate osteogenic differentiation. Therefore, we assayed and compared the melatonin effect on osteogenic differentiation of BMSC with that of ADSC. Methods: Mesenchymal...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2017